ECJ-INTEREST-L Archives

October 2015

ECJ-INTEREST-L@LISTSERV.GMU.EDU

Options: Use Monospaced Font
Show Text Part by Default
Show All Mail Headers

Message: [<< First] [< Prev] [Next >] [Last >>]
Topic: [<< First] [< Prev] [Next >] [Last >>]
Author: [<< First] [< Prev] [Next >] [Last >>]

Print Reply
Subject:
From:
"Pedro J. Ponce de León" <[log in to unmask]>
Reply To:
ECJ Evolutionary Computation Toolkit <[log in to unmask]>
Date:
Mon, 19 Oct 2015 18:56:27 -0400
Content-Type:
text/plain
Parts/Attachments:
text/plain (59 lines)
Hi, again.

I managed to solve the misconfiguration problem. I had to use the genetic programming pipeline AND the multiobjective fitness, breeder, and evaluator.

I post the working configuration here for anybody interested in it:

--- parameters ---
# The pipeline for GP is set in koza.params, included in my configuration file, like this
pop.subpop.0.species.pipe = ec.breed.MultiBreedingPipeline
pop.subpop.0.species.pipe.generate-max = false
pop.subpop.0.species.pipe.num-sources = 2
pop.subpop.0.species.pipe.source.0 = ec.gp.koza.CrossoverPipeline
pop.subpop.0.species.pipe.source.0.prob = 0.9
pop.subpop.0.species.pipe.source.1 = ec.breed.ReproductionPipeline
pop.subpop.0.species.pipe.source.1.prob = 0.1

# Multiobjective fitness configuration 
pop.subpop.0.species.fitness = ec.multiobjective.nsga2.NSGA2MultiObjectiveFitness
pop.subpop.0.species.fitness.num-objectives = 2 # This is here only as a default value. It is set programatically
pop.subpop.0.species.fitness.maximize = false
seed.0 = time
pop.subpop.0.species.crossover-type = sbx
pop.subpop.0.species.crossover-distribution-index = 20
pop.subpop.0.species.mutation-type = polynomial
pop.subpop.0.species.mutation-distribution-index = 20
pop.subpop.0.species.mutation-bounded = true

# Use a statistics object which dumps the front
stat =                                          ec.multiobjective.MultiObjectiveStatistics
stat.front =                                    $front.stat

# specific evaluator and breeder
eval = ec.multiobjective.nsga2.NSGA2Evaluator
breed = ec.multiobjective.nsga2.NSGA2Breeder
...
--- end parameters ---

Also, in the evaluate() method in my custom GPProblem, I put this:

   public void evaluate(final EvolutionState state, Individual ind,
	    int subpopulation, int threadnum) {
	if (!ind.evaluated) {    // don’t bother reevaluating
        ...
		NSGA2MultiObjectiveFitness fitness = (NSGA2MultiObjectiveFitness) ind.fitness;
		// NOT THIS ONE: ec.gp.koza.KozaFitness fitness = (ec.gp.koza.KozaFitness) ind.fitness;

		double[] objectives = new double[numObjectives]; 
                setupObjectives(objectives);
		fitness.setObjectives(state, objectives);
        ...
	    ind.evaluated = true;
	}
    }

That's it.

Best,
--Pedro J. Ponce de León

ATOM RSS1 RSS2